Chemistry

Enthalpy, Entropy and Free Energy

McFTUMOR.com by T. McCracken

The bankruptcy sale at the
Entropy Institute was going to more difficult than Dave thought it'd be.
Periodic Table of the Elements

1 H 1.0079																	
3	4											5	6	7	8	9	10
Li	Be											B	C	N	O	F	Ne
6.941	9.012											10.811	12.011	14.007	16.00	19.00	20.179
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	Cl	Ar
22.99	24.30											26.98	28.09	30.974	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.938	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	93.94	（98）	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.91	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	208.98	（209）	（210）	（222）
87	88	＋ 89	104	105	106	107	108	109	110	111	112	§Not yet named					
Fr	Ra	${ }^{+} \mathrm{Ac}$	Rf	Db	Sg	Bh	Hs	Mt	§	§	§						
（223）	226.02	227.03	（261）	（262）	（263）	（262）	（265）	（266）	（269）	(272)	(277)						

下 $\mathcal{\sim}$	은
악순	은
（ $8 \leqslant \stackrel{M}{\circ}$	$\bar{\circ} \bar{\sim})^{\circ} \stackrel{\sim}{\sim}$
$\bigcirc \times \stackrel{\sim}{\sim}$	은 트N
	カッ ¢
	®u
¢ $¢$	か ¢ ¢ ¢
	¢ E ¢
¢ ¢ ¢	¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢	か a
¢ ¢ ¢ ¢ ¢ ¢	$\cdots \cdots$
	N \sim ¢
	¢ธ®
¢®ல	ه닫

AP Chemistry Equations \& Constants

Throughout the test the following symbols have the definitions specified unless otherwise noted.

$$
\begin{aligned}
\mathrm{L}, \mathrm{~mL} & =\operatorname{liter}(\mathrm{s}), \text { milliliter(s) } \\
\mathrm{g} & =\operatorname{gram}(\mathrm{s}) \\
\mathrm{nm} & =\text { nanometer(s) } \\
\mathrm{atm} & =\text { atmosphere(s) }
\end{aligned}
$$

$\mathrm{mm} \mathrm{Hg}=$ millimeters of mercury
$\mathrm{J}, \mathrm{kJ}=$ joule(s), kilojoule(s)
$\mathrm{V} \quad=\operatorname{volt}(\mathrm{s})$
$\mathrm{mol}=\operatorname{mole}(\mathrm{s})$

ATOMIC STRUCTURE

$$
\begin{aligned}
& E=h v \\
& c=\lambda v
\end{aligned}
$$

$$
\begin{aligned}
& E=\text { energy } \\
& v=\text { frequency } \\
& \lambda=\text { wavelength }
\end{aligned}
$$

Planck's constant, $h=6.626 \times 10^{-34} \mathrm{~J}$ s
Speed of light, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Avogadro's number $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Electron charge, $e=-1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM

$$
\begin{aligned}
K_{c} & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}, \text { where } a \mathrm{~A}+b \mathrm{~B} \rightleftarrows c \mathrm{C}+d \mathrm{D} \\
K_{p} & =\frac{\left(P_{\mathrm{C}}\right)^{c}\left(P_{D}\right)^{d}}{\left(P_{\mathrm{A}}\right)^{a}\left(P_{\mathrm{B}}\right)^{b}} \\
K_{a} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
K_{b} & =\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HB}^{+}\right]}{[\mathrm{B}]} \\
K_{w} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \\
& =K_{a} \times K_{b} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right], \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
14 & =\mathrm{pH}+\mathrm{pOH} \\
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{p} K_{a} & =-\log K_{a}, \mathrm{p} K_{b}=-\log K_{b}
\end{aligned}
$$

Equilibrium Constants

K_{c} (molar concentrations)
K_{p} (gas pressures)
K_{a} (weak acid)
K_{b} (weak base)
K_{w} (water)

KINETICS

$$
\begin{aligned}
\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0} & =-k t \\
\frac{1}{[\mathrm{~A}]_{t}}-\frac{1}{[\mathrm{~A}]_{0}} & =k t \\
t_{1 / 2} & =\frac{0.693}{k}
\end{aligned}
$$

$$
\begin{aligned}
k & =\text { rate constant } \\
t & =\text { time } \\
t_{1 / 2} & =\text { half-life }
\end{aligned}
$$

GASES, LIQUIDS, AND SOLUTIONS

$$
\begin{aligned}
P V & =n R T \\
P_{A} & =P_{\text {total }} \times X_{\mathrm{A}}, \text { where } X_{\mathrm{A}}=\frac{\text { moles A }}{\text { total moles }} \\
P_{\text {total }} & =P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\ldots \\
n & =\frac{m}{\boldsymbol{M}} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273 \\
D & =\frac{m}{V}
\end{aligned}
$$

$K E$ per molecule $=\frac{1}{2} m v^{2}$
Molarity, $M=$ moles of solute per liter of solution

$$
A=a b c
$$

$P=$ pressure
$V=$ volume
$T=$ temperature
$n=$ number of moles
$m=$ mass
$\boldsymbol{M}=$ molar mass
$D=$ density
$K E=$ kinetic energy
$v=$ velocity
$A=$ absorbance
$a=$ molarabsorptivity
$b=$ path length
$c=$ concentration

Gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

$$
\begin{aligned}
& =0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =62.36 \mathrm{~L} \text { torr mol} \\
-1 & \mathrm{~K}^{-1} \\
1 \mathrm{~atm} & =760 \mathrm{~mm} \mathrm{Hg} \\
& =760 \mathrm{torr} \\
\mathrm{STP} & =0.00^{\circ} \mathrm{C} \text { and } 1.000 \mathrm{~atm}
\end{aligned}
$$

THERMOCHEMISTRY/ ELECTROCHEMISTRY

$$
\begin{aligned}
q & =m c \Delta T \\
\Delta S^{\circ} & =\sum S^{\circ} \text { products }-\sum S^{\circ} \text { reactants } \\
\Delta H^{\circ} & =\sum \Delta H_{f}^{\circ} \text { products }-\sum \Delta H_{f}^{\circ} \text { reactants } \\
\Delta G^{\circ} & =\sum \Delta G_{f}^{\circ} \text { products }-\sum \Delta G_{f}^{\circ} \text { reactants } \\
\Delta G^{\circ} & =\Delta H^{\circ}-T \Delta S^{\circ} \\
& =-R T \ln K \\
& =-n F E^{\circ} \\
I & =\frac{q}{t}
\end{aligned}
$$

$$
\begin{aligned}
q & =\text { heat } \\
m & =\text { mass } \\
c & =\text { specific heat capacity } \\
T & =\text { temperature } \\
S^{\circ} & =\text { standard entropy } \\
H^{\circ} & =\text { standard enthalpy } \\
G^{\circ} & =\text { standard free energy } \\
n & =\text { number of moles } \\
E^{\circ} & =\text { standard reduction potential } \\
I & =\text { current (amperes) } \\
q & =\text { charge (coulombs) } \\
t & =\text { time (seconds) }
\end{aligned}
$$

Faraday's constant, $F=96,485$ coulombs per mole of electrons

$$
1 \text { volt }=\frac{1 \text { joule }}{1 \text { coulomb }}
$$

What I Absolutely Have to Know to Survive the AP Exam

The following might indicate the question deals with thermochemistry and thermodynamics: calorimeter; enthalpy (ΔH); specific heat $\left(\mathrm{C}_{\mathrm{p}}\right)$; endothermic; exothermic; heat (q); heat capacity (C); heat transfer; bond energy; entropy (ΔS); Gibb's free energy (ΔG); spontaneous; state function

Laws of Thermodynamics	
Zeroth Law:	Heat flows from hot to cold
First Law:	Energy and matter are conserved
Second Law:	Matter tends towards chaos
Third Law:	Entropy of a pure crystal at 0K is zero

Thermodynamic Terms
What does each term tell us?

Enthalpy (ΔH)	Energy content	+ endothermic	- exothermic
Entropy (ΔS)	Disorder	+ increase in the dispersal of matter	-decrease in the dispersal of matter
Free energy (ΔG)	Thermodynamically favored or not favored	+ not thermodynamically favored	- thermodynamically favored
Equilibrium (K)	Extent of reaction	>1 reaction favors products	<1 reaction favors reactants

Internal Energy (ΔE) and Heat Flow

- Refers to all of the energy contained within a chemical system.
- Heat flow between the system and its surroundings involves changes in the internal energy of the system. It will either increase or decrease
- Increases in internal energy may result in a
- temperature increase
- chemical reaction starting
- phase change
- Decreases in internal energy may result in a
- a decrease in temperature
- phase change
- Note: even though the change in internal energy can assume several different forms, the amount of energy exchanged between the system and the surroundings can be accounted for ONLY by heat (q) and work (w)
- $\Delta E=q+w$
- Work (w) refers to a force acting on an object; in chemical processes this acting force is done $\boldsymbol{b} \boldsymbol{y}$ a gas through expansion or to a gas by compression.
- This is referred to as "pressure/volume" work
- Thus, $w=-P \Delta V$
- Where P is constant external pressure (atm) and $\Delta V(\mathrm{~L})$ is the change in volume of the system

Calculating Heat (q)

- Heat (q) gained or lost by a specific amount of a known substance can be calculated using the heat capacity of the substance and the change in temperature the system undergoes.
- Calorimetry
- The process of experimentally measuring heat by determining the temperature change when a body absorbs or releases energy as heat.
- Coffee-cup calorimetry -use a Styrofoam cup, mix reactants that begin at the same temperature and look for change in temperature; the heat transfer is calculated from the change in temp.

$$
q=m C \Delta T
$$

- $\mathrm{q}=$ quantity of heat (Joules)
- ΔT is the change in temperature
- $\Delta T=T_{\mathrm{f}}-T_{\mathrm{i}} \quad$ (final - initial)
- watch the sign; if the system loses heat to the surroundings then the $\Delta T=-$
- $C \mathrm{p}=$ specific heat capacity $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
- $m=$ mass in grams
- the specific heat of water (liquid) $=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Also note:

- $\mathrm{q}=-\Delta H$ at constant pressure

Enthalpy ($\boldsymbol{\Delta H}$)

Enthalpy

- Heat content; ΔH
- Endothermic (+) or Exothermic (-)
- Calculating Enthalpy 5 Ways
- Calorimetry (see above)
- Enthalpy of formation, $\Delta H_{\mathrm{f}}^{\circ}$ (using table of standard values)
- Hess's Law
- Stoichiometry
- Bond Energies

ΔH_{f}° - Enthalpy of Formation

- Production of ONE MOLE of compound FROM ITS ELEMENTS in their standard states $\left({ }^{\circ}\right)$
- Zero (0) for ELEMENTS in standard states: $25^{\circ} \mathrm{C}(298 \mathrm{~K}), 1 \mathrm{~atm}, 1 M$
Big Mamma Equation: $\quad \Delta H^{\circ}{ }_{\text {rxn }}=\Sigma \Delta H^{\circ}{ }_{f}$ (products) $-\Sigma \Delta H^{\circ}{ }_{f(\text { reactants) }}$
$3 \mathrm{Al}(s)+3 \mathrm{NH}_{4} \mathrm{ClO}_{4}(s) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(s)+\mathrm{AlCl}_{3}(s)+3 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

Substance	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{NH}_{4} \mathrm{ClO}_{4}(s)$	-295
$\mathrm{Al}_{2} \mathrm{O}_{3}(s)$	-1676
$\mathrm{AlCl}_{3}(s)$	-704
$\mathrm{NO}(g)$	90.0
$\mathrm{H}_{2} \mathrm{O}(g)$	-242

Hess's Law

- Enthalpy is not dependent on the reaction pathway. If you can find a combination of chemical equations that add up to the desired overall equation, you can sum up the ΔH_{rxn} 's for the individual reactions to get the overall ΔH_{rxn}.
- Remember this:
- First decide how to rearrange equations so reactants and products are on appropriate sides of the arrows.
- If equations had to be reversed, change the sign of ΔH
- If equations had be multiplied to get a correct coefficient, multiply the ΔH by the coefficient
- Check to ensure that everything cancels out to give you the correct equation.
- Hint** It is often helpful to begin working backwards from the answer that you want!

$$
\mathrm{C}_{2} \mathrm{H}_{6}(g)+\frac{7}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)
$$

$$
\begin{array}{ll}
2 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g) & \Delta H^{\circ}=-84.68 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta H^{\circ}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g) & \Delta H^{\circ}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Using Stoichiometry to Calculate $\Delta \boldsymbol{H}$

- Often questions are asked about the enthalpy change for specific quantities in a reaction
- Use a little stoichiometry to solve these; just remember the $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ is per mole and convert to the unit and quantity given

How much heat is released when 1.00 g iron is reacted with excess O_{2} ?

$$
\begin{aligned}
& 4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s) \quad \Delta H_{\mathrm{rxn}}^{\circ}=-1652 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn} \\
& \text { heat released }=\frac{-1652 \mathrm{~kJ}}{4 m o l \mathrm{Fe}} \times \frac{1.00 \mathrm{~g}}{55.85 \frac{\mathrm{~g}}{\mathrm{~mol}}}=-7.39 \mathrm{~kJ} \text { per gram of } \mathrm{Fe}
\end{aligned}
$$

- the (-) represents the LOSS or release of heat
- can also write 7.39 kJ released per gram of Fe

Using Bond Energy to Calculate $\boldsymbol{\Delta H}$

- Be able to use individual Bond Energy data to calculate the overall enthalpy change for a reaction

$$
\begin{gathered}
\Delta H_{\mathrm{rxn}}^{\circ}=\text { Sum of Bonds Broken }- \text { Sum of Bonds Formed } \\
\mathrm{H}_{2}(g)+\mathrm{F}_{2}(g) \rightarrow 2 \mathrm{HF}(g)
\end{gathered}
$$

Bond Type	Bond Energy
H-H	$432 \mathrm{~kJ} / \mathrm{mol}$
F-F	$154 \mathrm{~kJ} / \mathrm{mol}$
H-F	$565 \mathrm{~kJ} / \mathrm{mol}$

Entropy ($\boldsymbol{\Delta} \boldsymbol{S}$)

Entropy

- Dispersal of matter
- Less dispersal (-) or More dispersal (+)
- Calculating Entropy
- Table of standard values
- Hess's Law
- Entropy increases when:
- Gases are formed from solids or liquids (most important!!!!)
- $\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $\mathrm{C}(s)+\mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g)$
- A solution is formed
- Volume is increased in a gaseous system (energy is more efficiently dispersed)
- More complex molecules are formed

Big Mamma Equation II: $\Delta S_{\text {rxn }}^{\circ}=\Sigma \Delta S_{\text {(products) }}^{\circ}-\Sigma \Delta S^{\circ}{ }_{\text {(reactants) }}$

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)
$$

Substance	$S^{\circ}\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
$\mathrm{SO}_{2(\mathrm{~g})}$	248.1
$\mathrm{O}_{2(\mathrm{~g})}$	205.3
$\mathrm{SO}_{3(\mathrm{~g})}$	256.6

Free Energy ($\boldsymbol{\Delta} \boldsymbol{G}$)

Free Energy

- Thermodynamic favorability of the reaction
- Thermodynamically favorable $\left(-\Delta G^{\circ}\right)$ or thermodynamically unfavorable $\left(+\Delta G^{\circ}\right)$
- Calculate:
- Table of standard values
- Hess's Law

Big Mamma Equation III: $\quad \Delta G^{\circ}{ }_{\text {rxn }}=\Sigma \Delta G^{\circ}{ }_{(\text {products })}-\Sigma \Delta G^{\circ}{ }_{\text {(reactants) }}$

- $\Delta H^{\circ}, \Delta S^{\circ}$, and ΔG° may all be calculated from tables of standard values, from Hess' Law or from the Gibb's equation:

Connections to ΔH° and ΔS° :
Granddaddy of Them All: $\Delta G^{\circ}=\Delta H^{\circ}-\mathrm{T} \Delta S^{\circ}$
Caution on units: ΔH° and ΔG° are typically given in $\mathrm{kJ} \mathrm{mol}^{-1}$ whereas ΔS° typically given as $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$

Conditions of $\Delta \boldsymbol{G}$

ΔH	ΔS	ΔG
-	+	Spontaneous (-) at all temp
+	-	Spontaneous (-) at high temp
-	-	Spontaneous (-) at low temp
+	-	Non-spontaneous $(+)$ at all temp

Free Energy, Equilibrium, and Cell Potential

ΔG°	K	E°
0	at equilibrium	0
negative	>1, products favored	+
positive	<1, reactants favored	-

- Connecting ΔG° to K
- $\Delta G^{\circ}=-R T \ln K$
- Connecting ΔG° to E
- $\Delta G^{\circ}=-n \mathfrak{I} E^{\circ}$

Endothermic v. Exothermic

PROBLEM STRATEGY

You should be able to determine if the reactions are endothermic or exothermic and possibly determine the value of the ΔH° if the diagram has energy values given. For kinetics you will be asked to label the activation energy, E_{a}. CAUTION. Make sure to read carefully as questions are often asked about the reverse reaction.

Reaction Pathway

Thermochemistry Cheat Sheet

Relationships	
$q=m C_{\mathrm{p}} \Delta T$	$\Delta G=\Delta H-\mathrm{T} \Delta S$
$q=\Delta H$ (when pressure is constant/coffee cup)	$\Delta S_{\text {rxn }}=\sum \Delta S_{\text {prod }}-\sum \Delta S_{\text {react }}$
$(-) q_{\text {lost }}=q_{\text {gained }}$ (same value; opp. sign)	$\Delta G_{\text {rxn }}=\Sigma \Delta G_{\text {prod }}-\sum \Delta G_{\text {react }}$
$\Delta H_{\text {rxn }}=\Sigma \Delta H_{\text {prod }}-\sum \Delta H_{\text {react }}$	$\Delta G^{\circ}=-R T \ln K$ (use $8.31 \times 10^{-3} \mathrm{~kJ} / \mathrm{molK}$ for R) and watch your units for ΔG : they will be in kJ
$\Delta H_{\text {rxn }}=\sum$ bonds $_{\text {broken }}-\sum$ bonds $_{\text {formed }}$	$\Delta G^{\circ}=-n \mathfrak{I} E^{\circ}(96,500$ for $\mathfrak{I})$
$-\Delta H$ is exothermic; $+\Delta H$ is endothermic	$\Delta S=\frac{\Delta H}{\mathrm{~T}}$ at equilibrium (including phase change)
	$\Delta G=0$ at equilibrium and direction change
Be cautious of which system component is losing heat and which is gaining heat. Assign +/- signs accordingly.	Use $\Delta G=\Delta H-\mathrm{T} \Delta S$ equation to justify thermodynamic favorability. Discuss ΔH "overtaking" the $\mathrm{T} \Delta S$ term and vice versa.
Connections	
Kinetics - reaction diagrams Stoichiometry - Energy values are usually $\mathrm{kJ} / \mathrm{mol}$ so if you have other than 1 mole adjust accordingly	Electrochem: $\Delta G=-n \mathfrak{I} E^{\circ}$ Equilibrium: $\Delta G=-R T \ln K$
Potential Pitfalls	
$\begin{aligned} & \Delta H_{\mathrm{rxx}} \text { is usually in } \mathrm{kJ} \mathrm{~mol}^{-1} \text { (that's per mol of rxn) } \\ & \Delta H_{\mathrm{f}} \text { is usually in } \mathrm{kJ} \mathrm{~mol}^{-1} \\ & \mathrm{C}_{\mathrm{p}}=\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C} \text { (specific heat units) } \end{aligned}$	ΔS is in J / K not in kJ like ΔH and ΔG ΔG must be negative for thermodynamic favorability Watch your signs and know what they mean
UNITS CAUTION: this calculation gives w in units of (L•atm) not Joules (or kJ)!!!! $1 \mathrm{~atm}=101,325 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \quad \text { and } 1 \mathrm{~L}=0.001 \mathrm{~m}^{3}$ $1 \mathrm{~L} \cdot \mathrm{~atm}=101.3 \mathrm{~N} \cdot \mathrm{~m}=101.3 \mathrm{~J}$	
ALL $P \Delta V$ calculations for work need to be $\times 101.3$ to convert to Joules, J	

NMSI Super Problem

Magnesium flakes were added to an open polystyrene cup filled with 50.0 mL of 1.00 M HCl solution. Assume the specific heat of the solution to be $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

$$
\operatorname{Mg}(s)+2 \mathrm{HCl}(a q) \rightarrow \operatorname{MgCl}_{2}(a q)+\mathrm{H}_{2}(g) \quad \Delta H_{r x n}^{\circ}=-316.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(a) If 0.600 g of the magnesium were added, determine the total amount of heat released into the calorimeter.

heat released $=316.0 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \times \frac{0.600 \mathrm{~g}}{24.31 \frac{\mathrm{~g}}{\mathrm{~mol}}}=7.80 \mathrm{~kJ} \quad$	$\mathbf{1}$ point is earned for calculating the number of moles of Mg reacted
$\mathbf{1}$ point is earned for calculating the total amount of heat released	

(b) Determine the temperature change in the calorimeter.
$q=m C \Delta T$
$7800=(50.60)(4.18)(\Delta T)$
$36.9^{\circ} \mathrm{C}=\Delta T$
$\mathbf{1}$ point is earned for correctly calculating the $\Delta \mathrm{T}$ consistent with part (a)
(c) Draw an energy diagram and label the enthalpy change, ΔH, for the reaction.

Potential Energy		1 point is earned for correctly sketching the energy diagram for an exothermic reaction. 1 point is earned for correctly labeling ΔH
	Reaction Pathway	

The hydrogen gas produced in the reaction of magnesium and HCl was captured and placed in a sealed container, which occupies a volume of 650 mL at a constant pressure of 1.0 atm . The temperature of the container and gas was changed by $15^{\circ} \mathrm{C}$; the resulting volume of the gas in the container is 620 mL .
(d) Is the temperature of the system increasing or decreasing. Justify your answer

The temperature of the system is decreasing. A decrease in the volume of gas indicates a decrease in the temperature of the gas since the system is at constant pressure and the amount of the gas is not changing.

1 point is earned for stating that the temperature will decrease, with correct justification.
(e) Is the statement in the box below correct? Justify your answer.

> The gas collected in the container does work on the surroundings

The statement is not correct. A decrease in the temperature will slow the particles, which will decrease the pressure in the system and cause the piston to move downward decreasing the volume of the container until the pressure inside and outside are equal. This indicates the surroundings are doing work on the system or gas.

1 point is earned for stating that statement is not correct with justification.

Answer the following questions about the oxidation of magnesium metal.

$$
\mathrm{Mg}(s)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{MgO}(s)
$$

(f) Determine the value of the standard enthalpy change for the reaction in the box above.

$$
\begin{array}{ll}
\mathrm{Mg}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g) & \Delta H_{r x n}^{\circ}=-316.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{MgO}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\ell) & \Delta H^{\circ}{ }_{r x n}=-45.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) & \Delta H_{r x n}^{\circ}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Using Hess's Law:		1 point is earned for correctly mgCl manipulating
$\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{MgO}(\mathrm{O})+2 \mathrm{HCl}(a q)$	$\Delta H^{\circ}{ }_{r x n}=+45.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$\Delta H^{\circ}{ }_{r x n}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{Mg}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)$	$\Delta H^{\circ}{ }_{r x n}=-316.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$\mathbf{1}$ point is earned for correctly calculating the $\Delta H^{\circ}{ }_{r x n}$ for the oxidation of magnesium
$\mathrm{Mg}(s)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{MgO}(s)$	$\Delta H^{\circ}{ }_{r x n}=-556 \mathrm{~kJ} \mathrm{~mol}^{-1}$	

(g) Determine the value of the standard entropy change, $\Delta S^{\circ}{ }_{\mathrm{rxx}}$, for the oxidation of magnesium using the information in the following table.

Substance	$S^{\circ}\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
Mg	33
O_{2}	205
MgO	27

$\Delta S^{\circ}{ }_{r x n}=\Sigma \mathrm{n} \Delta S^{\circ}{ }_{\text {products }}-\Sigma \mathrm{n} \Delta S^{\circ}{ }_{r \text { reactants }}$	$\mathbf{1}$ point is earned for multiplying the ΔS° of $\Delta S^{\circ}{ }_{r x n}=[27]-[(33)+(1 / 2 \times 205)]=-109 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
O_{2} by it's coefficient $(1 / 2)$	
$\mathbf{1}$ point is earned for calculating the $\Delta S^{\circ}{ }_{r x n}$	

(h) Calculate $\Delta G^{\circ}{ }_{\text {rxn }}$ for the oxidation of magnesium at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \Delta G^{\circ}=\Delta H^{\circ}-\mathrm{T} \Delta S^{\circ} \\
& \Delta G^{\circ}=[-556]-[(298)(-0.109)]=-524 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

> 1 point is earned for correctly calculating the product $\mathrm{T} \Delta S^{\circ}$ consistent with part (d)

> 1 point is earned for correctly substituting and calculating ΔG° consistent with part (c) and (d).
(i) Indicate whether the reaction is thermodynamically favored at $25^{\circ} \mathrm{C}$. Justify your answer

Since ΔG° is negative the reaction is thermodynamically favored.

1 point is earned for correctly stating the reaction is thermodynamically favored with justification

The hydrogen gas collected and placed in the sealed container above is mixed with nitrogen gas to produce ammonia according to the Haber process shown below.

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \quad \Delta G^{\circ}{ }_{r x n}=-34.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta H_{r x n}^{\circ}=-92.2 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(j) In terms of the equilibrium constant, K, for the above reaction at $25^{\circ} \mathrm{C}$
i. Predict whether K will be greater than, less than, or equal to one. Justify your choice.

Since the reaction is spontaneous (ΔG° is negative) the equilibrium constant will be >1 as the products are favored.

1 point is earned for the correct answer, with proper justification.
ii. Calculate its value.

$\Delta G^{\circ}=-R T \ln K_{e q}$	1 point is earned for the correct substitution, including converting the temperature to Kelvin.
$\ln K_{e q}=-\frac{\Delta G^{\circ}}{R T}=-\frac{-34.1}{\left(8.31 \times 10^{-3}\right)(298)}=13.8$	$\mathbf{1}$ point is earned for the correct answer. Note: If the previous answer is not rounded before calculating K, the acceptable answer of 9.56×10^{5} is obtained.
$K_{e q}=e^{13.8}=9.85 \times 10^{5}$	

(k) In terms of the standard entropy change, ΔS°
i. Predict the sign of ΔS° for the above reaction. Justify your answer.
ΔS° will be negative as 4 mol of gas are converted into 2 mol of gas. The reaction is becoming less disordered.

1 point is earned for the correct sign, with proper justification.
ii. Calculate the value of $\Delta S^{\circ}{ }_{r x n}$ for the above reaction at $25^{\circ} \mathrm{C}$.

$\Delta G^{\circ}=\Delta H^{\circ}-\mathrm{T} \Delta S^{\circ}$	1 point is earned for correctly calculating the ΔS° consistent with part (b). Answer should be -195 (not -196$).$
$\Delta S^{\circ}=\frac{\Delta H^{\circ}-\Delta G^{\circ}}{\mathrm{T}}=\frac{(-92.2)-(-34.1)}{298}=-0.195=-195 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	

(l) Using the data in the table below and the enthalpy of reaction, $\Delta H^{\circ}{ }_{\mathrm{rxn}}$, calculate the approximate bond energy of the nitrogen-hydrogen bond in ammonia.

Bonds	Approximate Bond Energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{N}-\mathrm{H}$	$? ? ?$
$\mathrm{H}-\mathrm{H}$	430
$\mathrm{~N} \overline{\overline{\mathrm{~N}}} \mathrm{~N}$	960

```
\DeltaH }\mp@subsup{}{\textrm{rxn}}{}\mp@subsup{}{}{\prime}=\mathrm{ Sum of Bonds Broken - Sum of Bonds Formed
-92.2 = [(1 N-N bond)+(3 H-H bonds)] - [2(3 N-H bonds)]
-92.2 = [(960) + (3 × 430)]-[6(N-H bond )}
-92.2 = [2250] - [6(N-H bond)]
2342 = 6(N-H bond)
N}-\textrm{H}\mathrm{ bond = 390 kJ mol}\mp@subsup{}{}{-1
```

1 point is earned for the correct number of bonds in all three compounds multiplied by the average bond enthalpies.

1 point for the correct $\mathrm{N}-\mathrm{H}$ bond energy, with correct units.

